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The statistical distribution of Boolean gates in two-inputs, 
one-output multilayered neural networks 

Mirta B Gordon and Pierre Peretto 
Dipartement de Recherche FondamentaleiSPh, Centre d’Etudes Nucliaires, 85X, 38041 
Grenoble Cedex, France 

Received 26 October 1989 

Abstract. We study the probability of implementing Boolean functions in layered neural 
networks, as a function of the number of hidden units and layers. We show how these 
probabilities depend on the values allowed to the thresholds, and how they evolve as a 
function of the number of hidden layers. For two input variables, it is shown that the 
probability of implementing the E X C L U S I V E  OR with one hidden layer remains low, even 
with a large number of hidden units. In the limit of an infinite number of layers, all the 
functions become equally probable, but probabilities already reach the asymptotic value 
within 10% with only five hidden layers. 

1. Introduction 

Neural networks are basically long-range Ising spin-glass models. A formal neuron i 
may be either active, U, = +1, or silent, U, = -1. Its state is determined by the ‘local 
field’ produced on it by the other neurons, through the synaptic efficacies J , .  These 
efficacies are equivalent to magnetic exchange interactions. Once they are given, the 
problem in statistical mechanics is to find the equilibrium properties of the system. In 
contrast, the main concern in the case of neural networks is to find a complete set of 
interactions such that the network correctly performs a given task. Very generally, a 
task is a mapping between the states of a given set of neurons, the inputs, and the 
states of the set of output neurons. Input and output neurons may coincide: in that 
case the task is to associate the different metastable final states to the possible initial 
states of the network, with a given prescription for the dynamical updating of individual 
neurons. These so-called associative memories have been extensively studied with the 
methods developed in spin-glass theory. In order to achieve more involved tasks, like 
classification, generalisation, etc, more complicated architectures, with hidden neurons, 
have been proposed. Hidden units are relevant only for the dynamics, i.e. for the 
evolution of the network from its initial to its final state. In this context, input and 
output neurons are called ‘visible’ units. 

Given a task and the network’s connectivity, learning is the process of searching 
adequate synaptic strengths. Learning in systems without hidden neurons is rather 
well understood. When the system contains hidden units, their states are not only 
defined by the desired input-output mapping, but also by the updating dynamics. 
Finding the synaptic strengths becomes very difficult: learning in general highly inter- 
connected networks with hidden neurons still remains an open problem. Some insight 
can be obtained by studying simpler, feed-forward, layered networks. In this architec- 
ture, neurons in the input layer are connected to neurons in the first hidden layer, 
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which are themselves connected to those in  the secod layer, and so on. Updating 
proceeds layer by layer, determining the states of the hidden units downstream from 
input to output. The fact that neurons in a hidden layer cannot influence the state of 
upstream layers’ neurons, makes the problem tractable. 

Several learning paradigms have been proposed. 
( a )  Error correction paradigm (back-propagation algorithm). The input layer is 

initialised with the patterns to be learnt. The signals are propagated from input to 
output units. The actual outputs are compared to the desired outputs, and the back- 
propagated error signals are used to modify the set of connections in a way that reduces 
the errors (Le Cun 1985, Rumelhart et a /  1986). 

( b )  Internal states reshujling (learning bj, choice oj’ internal represmtations). The 
internal states are iteratively modified so as to yield the desired output. A perceptron 
algorithm is used at every step of the iteration (Meir and Domany 1988, Grossman 1989). 

(c )  Building the network ( the tiling algorithm). Given a set of input-output relations, 
the network is constructed layer after layer. The central idea is that of faithful 
representation: the internal representations of inputs yielding different outputs should 
be different (Mezard and Nadal 1989). 

( d )  Darwinian learning (learning by selection). This approach is more biologically 
minded. Initially, connections are supposed to develop at random. Afterwards, learn- 
ing has to select the adequate pathways or connectivity (Toulouse er a /  1986, Peretto 
1989). 

This article deals with the last paradigm. We assume that the role of epigenesis is 
to make random connections between the layers of the network (sprouting phase), 
and  the role of learning is to select the right circuits (pruning phase).  The problem is 
that layered networks with random connections d o  not implement all possible functions 
with equal probability. Moreover, some functions may be not implementable at all by 
a given network. In that case, the system will be unable to react properly to stimuli 
whose response would call for one of these functions. Therefore, the possible 
behaviours of a system strongly depend on the probability distribution of Boolean 
functions it may implement, i.e. which mappings of binary input states onto binary 
output states is it able to realise when the synaptic strengths are chosen at random. 
On the other hand, as pointed out by Carnevali and Patarnello (1987) and  Solla (1988), 
the fact that a given architecture may implement more than one function introduces 
a n  entropy associated with the network. Learning a given function consists of eliminat- 
ing this prior entropy by adequately modifying the synaptic weights, a process usually 
called training, so that only the desired input-output mappings are implemented. 

In this paper we present computer simulations and rigorous analytical results on 
the probabilities of implementing one of the simpler Boolean function, namely two- 
inputs, one-output, in feed-forward neural networks with random couplings. We 
consider networks with a variable number of hidden layers, and  a variable number of 
hidden units per layer. The analytical results are derived in the thermodynamic limit 
of an  infinite number of units in each hidden layer. The restriction to networks with 
only one output unit does not introduce any loss of generality, since an architecture 
with many units at  the output layer may be considered as the concatenation of networks 
with a single output unit. The restriction to two units in the input layer is more severe. 
This choice has been dictated by the difficulty in handling the explosive increase of 
possible Boolean functions as the number of input units increases. It must be stressed, 
however, that the technique presented in this paper is, in principle, applicable to more 
general situations. 
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The paper is organised as follows. In the next section we present results without 
hidden layers, in section 3 are given the numerical results with one hidden layer, and 
analytic calculations are discussed in section 4. Section 5 presents the conclusions. 
Detailed calculations are left to appendices 1 and 2. 

2. Boolean functions without hidden layers 

Although implementation of Boolean functions in two-layer networks, without hidden 
units, is well understood (Minsky and Papert 1969), we shall consider it here in order 
to present the notation, the symmetries of the problem, and also the effect of the 
thresholds on the probability of implementing the different Boolean functions. 

We consider N" binary input units which can be in states (+, = 1 or (+, = -1, 
1 i No.  These units are directly coupled to the output neuron with synaptic strengths 
J , .  As usual, we introduce a neuron 0 clamped in the state U(,= 1, which acts as a 
threshold of value Jo.  There are S=2"O possible input states, labelled s. Given an 
input state, and the synaptic couplings, the output neuron's state is given by the usual 
relation 

In general, there are B = 2' boolean functions of N o  inputs. Each function T,,, 

1 s n s B, is characterised by the S outputs T~ = ( ~ ~ ( l ) ,  . . . , T , ( S ) )  corresponding to 
each of the S possible inputs. The network implements a given function T~ if the 
following S inequalities are simultaneously satisfied: 

4 (1 

, = o  
T , ( S )  c J,(+,(s)>O l S s S S  (2) 

because in that case, the output state, given by ( l ) ,  will be exactly T , ( s ) .  Note that in 
general one has S = 2&' inequalities and N o +  1 synaptic couplings. Because S 2 N o +  1, 
it is obvious that not always will a set of synaptic couplings J = { A }  satisfying (2) exist, 
which means that networks without hidden layers are unable to implement all the B 
possible Boolean functions of their inputs. 

Let us concentrate in the case N o =  2: we have B = 16 Boolean functions, and we 
label the S = 4 possible input states as follows: state s = 1 corresponds to the input 
( ( + , = 1 , u 2 = l ) , s = 2 t o ( 1 , - 1 ) , ~ = 3  t o ( - l , - l ) , a n d s = 4 t o ( - l , l ) .  Equations(2) 
can be written explicitly 

(20 )  
(2b) 
(2c) 
(2d )  

As already stated, these equations are not linearly independent: if for example the first 
three of them are obeyed, then constraints must be placed upon 7,(4) to satisfy the 
last one. Combining (2a)-(2d) one has, dropping the subscripts n, 

so that, because the A ,  are positive, functions with ~ ( 1 )  = ~ ( 3 )  = - 4 2 )  = --7(4), are not 
compatible with (3). They are precisely the exclusive or-xoR-and equivalence- 
EQUIV-, both well known to be not implementable without hidden units. 

7, ( l)(Jo + J ,  + J 2 )  = A > 0 
T ,  ( 2 ) ( J o  + J ,  - 5 2 )  = A 2  > 0 

7, ( 3 ) ( Jo - J ,  - J l )  = 

T,, (4)( Jo - J ,  + J2)  = A 4  > 0. 
> 0 

T(l)Al - T ( 2 ) A , +  T ( ~ ) A , = T ( ~ ) A ~  (3) 
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As pointed out by Ferran and Perazzo 1989, if the probability distribution of the 
synaptic strengths is the same for all neurons, excluding the threshold, then the structure 
of equations ( 2 )  present symmetries under permutations of the label of the input units 
and  corresponding exchanges in the synaptic couplings. These symmetries arise 
because of the arbitrariness in labelling the neurons of the input layer. In addition, 
if the probability distributions of synaptic couplings are even, new symmetries appear 
in equations ( 2 ) .  As a consequence, the set of all the possible Boolean functions is 
partitioned into subsets or families. If a function T ,  is implemented by the network, 
then applying these symmetries generates the family of functions to which T,  belongs. 
These families have no mutual overlaps, and  all the functions of the same family have 
the same probability of being implemented by the network. 

For N o  = 2 it is possible to determine all the families. Let us assume that T = ( T (  l ) ,  
~ ( 2 ) ,  7(3) ,  4 4 ) )  is the function implemented when the couplings take the values 
( J o ,  J , ,  J 2 ) .  Then, the outputs corresponding to states a'= ( a z ,  al), obtained by permu- 
tation of the input neurons' label, with exchanged couplings ( J o ,  J 2 ,  J1), i.e. the function 
T ' = ( T ( ~ ) ,  7(4), 7(3) ,  7 (2) ) ,  has the same probability, because it satisfies exactly the 
same inequalities ( 2 ) .  In addition to this exchange symmetry, if the probabilities of 
J I  and J2 are symmetric, the outputs to a"= ( -a , ,  a?) with couplings ( J o ,  - J , ,  J J ,  
namely T " =  ( ~ ( 4 ) ,  7(3) ,  4 2 1 ,  ~ ( l ) ) ,  also have the same probability because changing 
U, into -al together with J1 into - J ,  leaves system ( 2 )  invariant. It is easy to check 
that some of these symmetries are redundant. An exhaustive exploration of all the 
possible symmetries for N o  = 2 shows that there are four families of Boolean functions, 
which we denote V,  0, A and X .  A typical member of V is the function whose output 
is always T = 1 whatever the input is. A typical member of D is the function T = a , ,  
typical members of A are the A N D  T = (a,&(+?) and the implication T = (a,+aZ). The 
XOR and the equivalence T = ( a ,  -= a J ,  which have been shown to be not implement- 
able, both belong to the same family, which we denote X .  All the families are listed in 
table 1. 

If the couplings J = ( J o ,  J , ,  J2) are random, with probability distribution p ( J )  dJ, 
the probability that a function T ,  is implemented by the network without hidden units 
is given by 

where 0 is the Heaviside function, defined as usual by @(x) = 1 if x 5 0, and  @(x) = 0 
if x < 0. 9,, is the domain of the space of couplings that satisfies ( 2 ) .  Because of the 

Table 1. The four  families of Boolean functions o f  two inputs. 

~~ 

Output families 

~ 

+ + + - + - i - + - -  + - + - + + -  
+ - i - + - -  + -  i i - -  + - + -  i 

+ - -  i - i - i - + + - -  i + -  
- i + - -  i + - -  i - + - + + - - +  

- -  
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mentioned symmetry of equations (21, and assuming p ( J ) = p ( - J ) ,  one needs to 
calculate only one representative probability for each family. 

We first consider the case where the probabilities of the couplings are uniform: 

We allow the thresholds Jo to vary between bounds different than the synaptic couplings. 
Introducing ( 5 )  into ( 4 )  gives the following results: 

( 6 0 )  po -1 1 v - l ? r  

(6b1  po D - i ( ~ - r ) + & r 2  -~ 

( 6 ~ )  po A -1 - * r  -&r2  

P i  = o  ( 6 d )  
for r =  T / J s  1; and  

5 1  po -__-  
12 3r 

1 po -_ 
12r 

1 1  p" --+- 
A - 4 8  24r 

V -  

I> - 

Po, = o  ( 7 d )  
for r 3 1. In particular, for r = 1 we find: P\ = Po, = = 0.0625. The 
results are represented on figure 1. Functions of families A and V, which cannot be 

= 0.0833,  P: = 

Figure 1. Probability o f  implementing the different families of Boolean functions without 
hidden units,  a s  a function of r = T / J  (see text) .  
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implemented without thresholds, have finite asymptotic probabilities for r + “3, whereas 
the only family implementable without thresholds, family 0, has vanishing probability 
for r + m .  

If the synaptic couplings have identical probability densities, to be compared to 
the case r = 1, but Gaussian instead of uniform, we find slightly different values: 
P\ = PL = 0.108 17, P i  = 0.043 87, and obviously P ;  = 0. 

3. Numerical results with one hidden layer 

Suppose that we add, to the simple network of the preceding section, a certain number 
of hidden layers. Each layer h has N ”  units, each unit i being coupled to the units j 
of the preceding layer by synaptic couplings Jf-’, 0 S j  S N h - ’ ,  which we assume are 
random variables. The network architecture is represented in figure 2. As in the input 
layer, in principle a threshold unit clamped to 1 may be introduced. However, if the 
number of hidden units is large enough to make sure that at least one unit implements 
one of the functions of family V, the threshold is not needed because functions of V 
type give a constant output, independent of the input state, playing therefore the same 
role as a threshold. This has been confirmed by computer simulations, displayed in 
figures 3 ( a )  and 3(b), which represent the probabilities of implementing the four 
families of Boolean functions with one hidden layer, as a function of the number of 
hidden units, with and without threshold in the hidden layer. The couplings and 
thresholds have been taken at random with the same uniform distribution, so that 
r = T / J  = 1 in these simulations. It is clear that for NI 3 30 there is no need of a 
threshold hidden unit. 

I . . . . . . . . . . . . . . . . . .  

Output = Layer h + l  

~ ~~ 

Figure 2. Network architecture with hidden layers. 

Results are not very sensitive to the actual probability distribution law of the 
synaptic couplings: three different laws-uniform probability within an interval, 
Gaussian probability and random clipped synapses (in which J i  = 1 or Jf: = -1 with 
probability $)-give similar probabilities of implementing the different Boolean func- 
tions, as is shown in figures 3 and 4. 

Although it is well known that one hidden layer is enough to implement Boolean 
functions of family X-XOR and EQulv-they are still ‘harder’ to learn than the others, 
even with a large number of hidden units. As we show analytically in the next section, 
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0.lOl i 
p o  0000 0 0  

0.05 

Figure 3. Probability of the different families of Boolean functions with one hidden layer, 
against the number of hidden units, for uniformly distributed couplings. ( a )  With a 
threshold unit in the hidden layer, with r =  T / J =  1. ( h )  Without threshold unit in the 
hidden layer. Horizontal lines represent the asymptotic values, calculated analytically. 

Figure 4. Probabilit. of the different families of Boolean functions with one  hidden layer, 
for different probability distributions of the synaptic couplings. Open  symbols:  clipped 
synapses without hidden threshold; full symbols: Gaussian distribution of synaptic 
strengths, with hidden threshold with the same distribution. 

in the limit of an  infinite number of hidden units, the volume of the space of interactions 
that implements these functions remains relatively small. 

4. Analytic results with one and more hidden layers 

Given a state s at the input layer, the state of a neuron in layer h + 1 is a function of 
the states a : ( s )  of units in layer h :  

The scaling factor d?? has been introduced to further simplify notation. The states 
a: ( s )  are a function of states of neurons in layer h - 1, which in turn depend on states 
of neurons in layer h - 2 ,  and so on. 
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We address the following question: if all the synaptic couplings J t  are randomly 
chosen, what is the probability that a given unit of layer h + 1 will realise a given 
Boolean function 7, of the input states? 

Adding up together the synaptic couplings of neurons of layer 11 that implement 
the same Boolean function, equations (8) can be rewritten as follows: 

where 

Writing equation (9),  we formally replaced the N” neurons of layer h by B Boolean 
gates, each performing a different function T,,, coupled to the unit we are looking at 
by B effective synaptic couplings, K ! .  We assume that N h ,  the number of units in 
layer h, is large enough to contain neurons implementing all the possible Boolean 
functions of the inputs. Moreover, the fraction of units performing each function is 
close, by the law of large numbers, to the probability of implementing the function. 
Therefore, if the J t  are random variables of zero mean and variance A, the probability 
density of the effective couplings K ,  can be approximated, see appendix 1, by 

Each sum K ;  therefore has a Gaussian distribution, of width proportional to the 
probability Pk-’ that the nth Boolean function is realised by the preceding layer, i.e. 
by a network with h - 1  hidden layers. The probability that a neuron on layer h + l  
(i.e. with h hidden layers) implements the Boolean function T, is then: 

where p ( ~ ~ / { K t } ) ,  the probability of implementing T, given the values { K : } ,  can be 
expressed as follows: 

From now on we write T,, 
By introducing (1 1)  and (13) into (12), together with the integral representation of 

the Heaviside 0 function, one can integrate over the K t .  Details of the calculation 
are left to appendix 2. One finally gets 

T , ( s ) .  

dz, dz, 
d x  dy- exp[ -( zf + z:) - ( bh,-’x2 + b ; - ’ y 2 ) ]  

.rr I7 
ph = 

m 

where 
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are functions of the probabilities of implementing the Boolean functions with h - 1 
hidden layers: 

p F - I  = h - l  = g(ph,-'+ p i - ' )  P2 

Fui 

p2-I = 8( P";' + P i - ' ) .  
(16) h - l  = 8-pk-I + p i - ' )  

As in the case without hidden layers, the results are independent of A, the dispersion 
in the values of the random synaptic couplings. The domains Bm are given by 

T m  ( 1 ) ( 2 '  + y + x )  3 0 
Tm(3)(-Z1 + y + X )  2 0 

7, (2)( Z z  + y - X )  2 0 
7, (4)( -z>  + y - X )  3 0. (17) 

Introducing in (15) the results of section 2 with r = 1, corresponding to the same 
dispersion for thresholds as for synaptic couplings, we find the following probabilities 
of implementing the different families of boolean functions with one hidden layer: 

These results are in good agreement with the numerical simulations presented in 
figures 3. 

Feeding back into (14) the results (18),  it is possible to calculate the probabilities 
of implementing Boolean functions with two hidden layers, etc. Instead of doing so, 
introducing the expressions deduced from (14) for the four classes of functions, into 
(16), and integrating out the variables z1 and z 2 ,  we find 

P\ = 0.0783 P b  = 0.0786 P i  = 0.0597 P k  = 0.0253. (18) 

p ~ = p ~ = 2 - I + ( b h , - ' ,  b: - ' )  
p-; = I + (  b t - ' ,  bt - ' )  - I - (  b t - ' ,  bf ' - ' )  (18a) 
p: = I+(b;- ' ,  b t - ' ) + I - ( b : - ' ,  6P-l) 

where 

I+(u, 6 ) = -  4J;;i; J': dy 1; dx[exp( -ax2 - by') + exp( -ay' - b x 2 ) ]  
77 

x (erf(y + x )  + erf(y - x ) )  

I - (u ,  b )=-  8vm lox dy J: dx[exp( -ax2 - by') - exp( -ay2 - bx')] 
7T 

x e r f ( y + x )  erf(y-x) .  

0.08? 0 

0 5 h 
Figure 5. Probabilities against the number of hidden layers (numerical iteration of (18)). 
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Equations (18) have a fixed point at by = b, = 2. At this point, 1- = 0 and  it is easy to 
show that I ,  = 1. Moreover, from (18a 1 and (16) one gets PI] = Py = P b ,  and from 
the normalisation of probabilities, taking into account the degeneracy of each family 
of functions: 2P, + 8 P 4 + 4 P , + 2 P ,  = 1, we get PA = i- P k .  Integration of (14) with 
6 ,  = b, = 2 gives Pv = &. Therefore the fixed point corresponds to all the functions 
having the same probability, e.g. A. Indeed, numerical iteration of (18) shows that 
this fixed point corresponds to h + W, convergence to this value being already achieved, 
within lo%, after five iterations, as is displayed in figure 5.  

5. Conclusion 

Let us summarise the results we arrived at. We give exact numbers regarding the 
volumes in the space of interactions which specifically implement the 16 possible 
Boolean functions mapping two binary inputs onto one binary output. This calculation 
of the entropies of the various functions is done in the spirit of Gardner’s approach 
to learning (Gardner 1987), although the techniques used here slightly differ from 
those she introduced. 

We observe that the functions are unevenly distributed when the number of layers 
is small. This is not really surprising since one knows for example that it is not possible 
to implement the XOR function in systems devoid of hidden units. When the system 
has one hidden layer, which is a much studied architecture, the asymptotic distribution 

Pt. = 0.0783 Pb = 0.0786 P i  = 0.0591 P;, = 0.0253 

is already obtained for a number of units of about 30. When the number of layers 
increases, the distribution of Boolean function becomes uniform: all the functions 
have the same probability. Convergence is attained for as low a number of layers as 
4 or 5 .  It is not clear if such a rapid convergence would be achieved for more 
complicated Boolean functions. 

It is tempting to compare these results with experiments on human performance 
in learning the Boolean functions of two variables. Excluding our family V which 
they did not investigate, Thorpe et a1 (1988) reported that Boolean functions fell into 
three main groups with respect to difficulty in learning. These groups correspond to 
our families, and our calculated probabilities are in correpondence with the reported 
easiness in learning: functions in D required less trials to be learnt than functions in 
A, the hardest task being learning of functions in X .  If there were a correspondence 
between our formal layers and layers in the human brain, our results would suggest 
that very few layers are active in learning Boolean functions, because otherwise the 
XOR and  the E Q U I V  should be learnt with the same ease as the other simpler Boolean 
functions. 
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Appendix 1 

In this appendix we detail some of the calculations of section 4. 
The probability density function of the { K,,},  defined by (10) is 

p ( K l , .  . . , K s )  = P( {K , , } I {N , , } ) . p ( {N , , } )  ( A l . 1 )  

where {N,}  represents the partitions of N” in B subsets of N ,  elements implementing 
the same Boolean function T,, and  satisfying NI +. . . + N R  = N”. The probability of 
such a partition is 

par t i t ion \  { .* ) 

(Al.2) 

where Pk-’ is the probability that function T,, is implemented by a network with h - 1 
hidden layers. If N” >> B, the multinomial distribution (A1.2) is dominated by the 
most probable values of the arguments: N,, = N”P:-’. Expression ( A l . l )  can be 
approximated by 

P ( { K n } )  = P ( { ~ J / { R J ) .  (A1.3) 

Therefore the K,, are now sums of N, random variables of zero mean and variance 
A‘/ N h ,  and for large N” they have a Gaussian distribution of zero mean and variance 

, , which gives equation (1 1 ). The only assumption made is that the number 
of hidden units in the layer is large enough to neglect fluctuations in N,,, and that the 
51; are random independent variables of zero mean and dispersion A?. 

=A2pP,1-I  

Appendix 2 

Introducing (1 l ) ,  (13) and the integral representation of the 0 function 

@ ( z l = j o x  dh  J x  d x e  I “ ’ - * ’  

1 

into (12), it is possible to integrate out the { K,,},  to get 

The biquadratic form in the exponent is 

S 

= x,M:’~.Y,  = X T M : , X  
, , r = 1  

(A2.1) 

(A2.2) 

(A2.3) 

where XT= (x,, x2,. . . , x,), X its transposed vector, and 

B 

( ~ k 1 5 ,  = TmyTmr 1 P:T~~T, ,  = ~ m c ~ m r  p”,ghv)s, (A2.4) 

is a symmetric matrix, that can be expressed in terms of matrices which only depend 
on the functions 7, belonging to family v and the probabilities P t .  The matrix M k  

n -  1 I ,  = { L: D, A, X ) 
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(A2.5) 

Its eigenvalues are 
p ,  h h  = p 2 = 1 - z 1 ’  

p ; = 1 - 2yh + z 1’ (A2.6) 
h 

p.4 = 1 + 2yh + z” .  

Introduction of (A2.5) into (A2.6) gives (16). Integrating the variables x, in (A2.2) gives 

(A2.7) 

where ,iT = ( A , ,  A 2 ,  . . . , As) .  A straightforward change of variables gives equation (14). 

P!l = lox (fi, dA5) exp(-&2TMl:,,2) 
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